Unified biomimetic assembly of voacalgine A and bipleiophylline via divergent oxidative couplings

Lachkar, D.; Denizot, N.; Beradat, G.; Ahamada, K.; Beniddir, M.A.; Dumontet, V.; Gallard, J.F.; Guillot, R.; Leblanc, K.; N'nang, E.O.; Turpin, V.; Kouklovsky, C.; Poupon, E.; Evanno, L.; Vincent, G. *Nat. Chem.* **2017**, *AOP.*

Tim McFadden, Current Literature, 5/6/17

Voacolgine A

-monoindole alkaloid
-isolated from *voacanga grandifolia*-possible biosynthetic precursor to bipleiophylline
-has shown moderate cell growth inhibitory effects against
HL-60 and HCT116 cells

voacalgine A (originally assigned structure)

Bipleiophylline

-bisindole alkaloid with "aromatic spacer"

-isolated from Alstonia angustifolia

-biological activity not reported

-synthetic "mountain to climb" due to complexity

bipleiophylline

Tetrahedron, **2013**, *69*, 10869–75. *Org. Lett.* **2008**, *10*, 3749–52. Design and Strategy in Organic Synthesis: From the Chiron Approach to Catalysis (Wiley-VCH, 2013).

pleiocarpamine

pyrocatechuic acid

2

entry	oxidant	solvent	additive	time	isolated yield
1	K ₃ [Fe(CN) ₆]	-	-	-	0%
2	DDQ	-	-	-	0%
3	CAN	-	-	-	0%
4	NalO ₄	-	-	-	0%
5	PhI(OAc) ₂	DCM	none	15 h	0%, but
6	Ag ₂ O	DCM	none	6 h	14%
7	Ag ₂ O	MeCN	none	6 h	trace
8	Ag ₂ O	DCM	HCO ₂ H (2 equiv)	40 min	38%

entry	solvent	additive	isolated yield
1	DCM	none	10%
2	MeCN	none	51%
3	MeCN	HCO₂H	63%
4	HCO ₂ H	none	0% (decomp)

Eastern Moiety: Scope

7

Mechanism – Calculations I

- B3LYP/6-31G* calculations used to locate transition states
- Considered three reaction pathways:
 - 1) stepwise reaction: anchoring, trapping
 - 2) concerted, synchronous: [4+2], tautomerization
 - 3) concerted, asynchronous: sequential 'events', tautomerization

Increasing complexity with natural substances

46%

Double and sequential anchoring

50%, (1.6:1)

- An oxidative coupling protocol between indole and 2,3-dihydroxybenzoic acid was developed
- The first syntheses of bipleiophylline and voacalgine A were achieved
- The structure of voacalgine A was corrected and revised

Voacalgine A Revision

voacalgine A (revised structure)

Angew. Chem. Int. Ed. 2009, 48, 7616–7620.

Chem. Commun. **2015**, *51*, 1461–64.

16